CSE 142
Computer Programming I

Linear & Binary Search

Concepts This Lecture
Searching an array
Linear search
Binary search
Comparing algorithm performance

Searching
Searching = looking for something
Searching an array is particularly common
Goal: determine if a particular value is in the array
We'll see that more than one algorithm will work

Searching Problem: Specification
Let
- b be the array to be searched,
- n be the size of the array, and
- x be the value being searched for (the "target")

The question is, "Does x occur in b?"
If x appears in b[0..n-1], determine its index, i.e., find the k such that b[k]==x.
If x not found, return -1

Searching as a Function
The array b, the size n, and the target x are the parameters of the problem.
None of the parameters are changed by the function
Function outline:
int search (int b[], int n, int x) {
 ...
 The details of the function depend upon the algorithm used.
}

Linear Search
Algorithm: start at the beginning of the array and examine each element until x is found, or all elements have been examined
int search (int b[], int n, int x) {
 int index = 0;
 while (index < n && b[index] != x)
 index++;
 if (index < n)
 return index;
 else return -1;
}
Linear Search

Test:

search(v, 8, 6)

3 12 -5 6 142 21 -17 45

Found It!

Linear Search

Test:

search(v, 8, 15)

3 12 -5 6 142 21 -17 45

Ran off the end! Not found.

Linear Search

Note: The loop condition is written so
b[index] is not accessed if index>=n.

while (index < n && b[index] != x)

(Why is this true? Why does it matter?)

Can we do better?

Time needed for linear search is proportional to
the size of the array.

An alternate algorithm, "Binary search," works if
the array is sorted

1. Look for the target in the middle.
2. If you don’t find it, you can ignore half of
the array, and repeat the process with the
other half.

Example: Find first page of pizza listings in the
yellow pages

Binary Search Strategy

What we want: Find split between values
larger and smaller than x:

\[b \quad L \quad R \quad n \]

Situation while searching

\[b \quad L \quad ? \quad R \quad n \]

Step: Look at \(b[(L+R)/2] \). Move L or R
to the middle depending on test.

Binary Search Strategy

More precisely

\[b \quad L \quad ? \quad R \quad n \]

Values in \(b[0..L] \leq x \)
Values in \(b[R..n-1] > x \)
Values in \(b[L+1..R-1] \) are unknown
Binary Search
/* If x appears in b[0..n-1], return its location, i.e., return k so that b[k]==x. If x not found, return -1 */
int bsearch (int b[], int n, int x) {
 int L, R, mid;
 ________________;
 while (_______________) {
 mid = (L+R) / 2;
 if (b[mid] <= x)
 L = mid;
 else
 R = mid;
 }
 ________________;
}

Loop Termination
/* If x appears in b[0..n-1], return its location, i.e., return k so that b[k]==x. If x not found, return -1 */
int bsearch (int b[], int n, int x) {
 int L, R, mid;
 ________________;
 while (L+1 != R) {
 mid = (L+R) / 2;
 if (b[mid] <= x)
 L = mid;
 else
 R = mid;
 }
 ________________;
}

Initialization
/* If x appears in b[0..n-1], return its location, i.e., return k so that b[k]==x. If x not found, return -1 */
int bsearch (int b[], int n, int x) {
 int L, R, mid;
 L = -1; R = n;
 ________________;
 while (L+1 != R) {
 mid = (L+R) / 2;
 if (b[mid] <= x)
 L = mid;
 else
 R = mid;
 }
 ________________;
}

Return Result
/* If x appears in b[0..n-1], return its location, i.e., return k so that b[k]==x. If x not found, return -1 */
int bsearch (int b[], int n, int x) {
 int L, R, mid;
 L = -1; R = n;
 ________________;
 if (L >= 0 && b[L] == x)
 return L;
 else
 return -1;
}

Binary Search
Test: bsearch(v,8,3);
Binary Search

Test: `bsearch(v,8,17);`

```
L = -1; R = n;
while ( L+1 != R ) {
    mid = (L+R) / 2;
    if (b[mid] <= x)
        L = mid;
    else
        R = mid;
}
```

Test: `bsearch(v,8,143);`

```
L = -1; R = n;
while ( L+1 != R ) {
    mid = (L+R) / 2;
    if (b[mid] <= x)
        L = mid;
    else
        R = mid;
}
```

Test: `bsearch(v,8,-143);`

```
L = -1; R = n;
while ( L+1 != R ) {
    mid = (L+R) / 2;
    if (b[mid] <= x)
        L = mid;
    else
        R = mid;
}
```

Is it worth the trouble?

Suppose you had 1000 elements
Ordinary search would require maybe 500 comparisons on average
Binary search
after 1st compare, throw away half, leaving 500 elements to be searched.
after 2nd compare, throw away half, leaving 250. Then 125, 63, 32, 16, 8, 4, 2, 1 are left.
After at most 10 steps, you’re done!
What if you had 1,000,000 elements??

How Fast Is It?

Another way to look at it: How big an array can you search if you examine a given number of array elements?

<table>
<thead>
<tr>
<th># comps</th>
<th>Array size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>64</td>
</tr>
<tr>
<td>8</td>
<td>128</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>11</td>
<td>1,024</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>21</td>
<td>1,048,576</td>
</tr>
</tbody>
</table>

Time for Binary Search

Key observation: for binary search: size of the array \(n \) that can be searched with \(k \) comparisons: \(n \sim 2^k \)
Number of comparisons \(k \) as a function of array size \(n \): \(k \sim \log_2 n \)
This is fundamentally faster than linear search (where \(k \sim n \))
Summary

Linear search and binary search are two different algorithms for searching an array.

Binary search is vastly more efficient,
 but binary search only works if the array elements are in order.

Looking ahead: we will study how to sort arrays, that is, place their elements in order.